Cell Conservative Flux Recovery and A Posteriori Error Estimate of Vertex-Centered Finite Volume Methods

نویسندگان

  • Long Chen
  • Ming Wang
چکیده

A cell conservative flux recovery technique is developed here for vertexcentered finite volume methods of second order elliptic equations. It is based on solving a local Neumann problem on each control volume using mixed finite element methods. The recovered flux is used to construct a constant free a posteriori error estimator which is proven to be reliable and efficient. Some numerical tests are presented to confirm the theoretical results. Our method works for general order finite volume methods and the recovery-based and residual-based a posteriori error estimators is the first result on a posteriori error estimators for high order finite volume methods. AMS subject classifications: 65N15, 65N30, 65N50

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Mass Conservative Method for Numerical Modeling of Axisymmetric flow

In this paper, the cell-centered finite volume method (CC-FVM) has been presented to simulate the axisymmetric radial flow toward a pumping well. The model is applied to the unstructured triangular grids which allows to simulate inhomogeneous and complex-shaped domains. Due to the non-orthogonality of the irregular grids, the multipoint flux approximation (MPFA) methods are used to discretize t...

متن کامل

Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods

We derive in this paper a posteriori error estimates for discretizations of convection–diffusion–reaction equations in two or three space dimensions. Our estimates are valid for any cell-centered finite volume scheme, and, in a larger sense, for any locally conservative method such as the mimetic finite difference, covolume, and other. We consider meshes consisting of simplices or rectangular p...

متن کامل

A Posteriori Error Estimates for Vertex Centered Finite Volume Approximations of Convection-diffusion-reaction Equations

This paper is devoted to the study of a posteriori error estimates for the scalar nonlinear convection-diffusion-reaction equation ct+∇·(uf(c))−∇·(D∇c)+λc = 0. The estimates for the error between the exact solution and an upwind finite volume approximation to the solution are derived in the L-norm, independent of the diffusion parameter D. The resulting a posteriori error estimate is used to de...

متن کامل

An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow

In this paper we derive an a posteriori error estimate for the numerical approximation of the solution of a system modeling the flow of two incompressible and immiscible fluids in a porous medium. We take into account the capillary pressure, which leads to a coupled system of two equations: parabolic and elliptic. The parabolic equation may become degenerate, i.e., the nonlinear diffusion coeff...

متن کامل

A Posteriori Error Estimate and Adaptive Mesh Refinement for the Cell-Centered Finite Volume Method for Elliptic Boundary Value Problems

We extend a result of Nicaise [13] for the a posteriori error estimation of the cell-centered finite volume method for the numerical solution of elliptic problems. Having computed the piecewise constant finite volume solution uh, we compute a Morley-type interpolant Iuh. For the exact solution u, the energy error ‖∇T (u− Iuh)‖L2 can be controlled efficiently and reliably by a residual-based a p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013